6.4e: Exercises - Sum and Difference Identities (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    74425
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A: Evaluate sum and difference formulas from a given angle.

    Exercise \(\PageIndex{A}\)

    \( \bigstar \)Find the exact value.

    1. \(\cos \left ( \dfrac{7\pi }{4}- \dfrac{5\pi }{3} \right) \\[4pt]\)

    2. \(\cos \left ( \dfrac{11\pi }{6}- \dfrac{3\pi }{4} \right) \\[4pt]\)

    3. \(\cos \left ( \dfrac{\pi }{4}+ \dfrac{2\pi }{3} \right) \\[4pt]\)

    4. \(\cos \left ( \dfrac{5\pi }{4}+ \dfrac{\pi }{3} \right) \\[4pt]\)

    5. \(\sin\left ( \dfrac{5\pi }{4}- \dfrac{7\pi }{6} \right) \\[4pt]\)

    6. \(\sin\left ( \dfrac{5\pi }{3}- \dfrac{3\pi }{4} \right) \\[4pt]\)

    7. \(\sin\left ( \dfrac{\pi }{4}+ \dfrac{5\pi }{6} \right) \\[4pt]\)

    8. \(\sin\left ( \dfrac{7\pi }{4}+ \dfrac{\pi }{6} \right) \\[4pt]\)

    9. \(\tan\left ( \dfrac{11\pi }{6}- \dfrac{5\pi }{4} \right) \\[4pt]\)

    10. \(\tan\left ( \dfrac{7\pi }{4}- \dfrac{2\pi }{3} \right) \\[4pt]\)

    11. \(\tan\left ( \dfrac{\pi }{4}+ \dfrac{\pi }{6} \right) \\[4pt]\)

    12. \(\tan\left ( \dfrac{3\pi }{4}+ \dfrac{7\pi }{6} \right) \\[4pt]\)

    \( \bigstar \)Find the exact value.

    13. \( \cos \left (\dfrac{\pi }{12} \right) = \cos \left ( \dfrac{4\pi }{3}- \dfrac{5\pi }{4} \right) \\[4pt] \)

    14. \(\cos \left (\dfrac{7\pi }{12} \right) = \cos \left ( \dfrac{5\pi }{6}- \dfrac{\pi }{4} \right) \\[4pt] \)

    15. \( \sin \left (\dfrac{11\pi }{12} \right) = \sin \left ( \dfrac{3\pi }{4}+ \dfrac{\pi }{6} \right) \)

    16. \(\sin \left (\dfrac{5\pi }{12} \right) = \sin \left ( \dfrac{7\pi }{4}- \dfrac{4\pi }{3} \right) \\[4pt] \)

    17. \(\tan \left (\dfrac{19\pi }{12} \right) = \tan\left ( \dfrac{3\pi }{4}+ \dfrac{5\pi }{6} \right) \\[4pt]\)

    18. \(\tan \left (-\dfrac{\pi }{12} \right) = \tan\left ( \dfrac{7\pi }{6}- \dfrac{5\pi }{4} \right) \)

    19. \(\sin (195^{\circ})\)

    20. \(\sin (75^{\circ}) \)

    21. \(\cos (345^{\circ}) \)

    22. \(\cos (165^{\circ})\)

    23. \(\tan (-15^{\circ}) \)

    24. \(\cos (105^{\circ}) \)

    \( \bigstar \)Simplify

    25.\(\sin \left (x-\dfrac{3\pi }{4} \right)\) 26.\(\sin \left (x+\dfrac{11\pi }{6} \right)\) 27.\(\cos \left (x+\dfrac{2\pi }{3} \right)\) 28.\(\cos \left (x-\dfrac{5\pi }{6} \right)\)
    29.\(\sec \left (\dfrac{\pi }{2}-\theta \right)\) 30.\(\csc \left (\dfrac{\pi }{2}-t \right)\) 31.\(\cot\left (\dfrac{\pi }{2}-x \right)\) 32. \(\tan\left (\dfrac{\pi }{4}-x \right)\)

    \( \bigstar \) (a)Simplify and then (b) graph

    33. \(\cos \left ( \dfrac{\pi }{2}-x \right )\)

    34. \(\sin (\pi -x)\)

    35.\(\tan \left ( \dfrac{\pi }{3}+x \right )\)

    36.\(\sin \left ( \dfrac{\pi }{3}+x \right )\)

    37. \(\tan \left ( \dfrac{\pi }{4}-x \right )\)

    38. \(\cos \left ( \dfrac{7\pi }{6}+x \right )\)

    39. \(\sin \left ( \dfrac{\pi }{4}+x \right )\)

    40. \(\cos \left ( \dfrac{5\pi }{4}+x \right )\)

    Answers to odd exercises.

    1.\(\dfrac{\sqrt{2}+\sqrt{6}}{4}\) 3.\(\dfrac{-\sqrt{2}-\sqrt{6}}{4}\) 5.\(\dfrac{\sqrt{6}-\sqrt{2}}{4}\) 7.\(\dfrac{\sqrt{2}-\sqrt{6}}{4}\) 9. \( -2 - \sqrt{3} \) 11. \( 2 + \sqrt{3} \)

    13. \(\dfrac{\sqrt{2}+\sqrt{6}}{4}\) 15. \(\dfrac{\sqrt{6}-\sqrt{2}}{4}\) 17. \(-2-\sqrt{3}\) 19. \(-\dfrac{\sqrt{3}-1}{2\sqrt{2}}\) 21. \(\dfrac{1+\sqrt{3}}{2\sqrt{2}}\) 23. \( -2 + \sqrt{3} \)

    25. \(-\dfrac{\sqrt{2}}{2}\sin x-\dfrac{\sqrt{2}}{2}\cos x\) 27. \(-\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x\) 29. \(\csc \theta\) 31.\(\tanx\)

    33. \(\sin x\)

    6.4e: Exercises - Sum and Difference Identities (1)

    35. \(\cot \left ( \dfrac{\pi }{6}-x \right )\)

    6.4e: Exercises - Sum and Difference Identities (2)

    37. \(\cot \left ( \dfrac{\pi }{4}+x \right )\)

    6.4e: Exercises - Sum and Difference Identities (3)

    39. \(\dfrac{\sin x}{\sqrt{2}}+\dfrac{\cos x}{\sqrt{2}}\)

    6.4e: Exercises - Sum and Difference Identities (4)

    B: Evaluate sum and difference formulas given trig ratios of angles

    Exercise \(\PageIndex{B}\)

    41. Given that \(\sin a=\dfrac{4}{5}\) and \(\cos b=\dfrac{1}{3}\), with \(a\) and \(b\) both in the interval \(\left [ 0, \dfrac{\pi }{2} \right )\)

    (a) Find \(\sin (a-b)\) (b) Find \(\cos (a+b)\).

    42. Given that \(\sin a=\dfrac{2}{3}\) and \(\cos b=-\dfrac{1}{4}\), with \(a\) and \(b\) both in the interval \(\left [ \dfrac{\pi }{2}, \pi \right )\),

    (a) Find \(\sin (a+b)\) (b) Find\(\cos (a-b)\).

    43.Angles \(A\) and \(B\) are in standard position and \(\sin( A ) = \dfrac{1}{2}, \cos(A) > 0)\), \(\cos(B) = \dfrac{3}{4}\), and \(\sin(B) < 0\).
    Draw a picture of the angles \(A\) and \(B\) in the plane and then find each of the following.

    (a) \(\cos(A + B)\) (b) \(\cos(A - B)\) (c) \(\sin(A + B)\) (d) \(\sin(A - B)\) (e) \(\tan(A + B)\) (f) \(\tan(A - B)\)

    \( \bigstar \) Given the information about angles \(A\) and\(B\) in the exercises below, find the exact value for each of the following.

    (a) \(\cos(A + B)\) (b) \(\cos(A - B)\) (c) \(\sin(A + B)\) (d) \(\sin(A - B)\) (e) \(\tan(A + B)\) (f) \(\tan(A - B)\)

    45. \( \sin A = -\dfrac{3}{5} \) with\(A\)in QuadrantIII, and \( \cos B = \dfrac{1}{2} \) with\(B\)in Quadrant IV.

    46. \( \sinA =\dfrac{4}{5} \) with\(A\)in Quadrant I, and \( \tanB = -\dfrac{\sqrt{5}}{2} \) with\(B\)in Quadrant II.

    47. \( \cosA = \dfrac{1}{2} \) with\( 0 \le A \le \tfrac{\pi}{2} \), and \( \tanB = 2 \sqrt{2}\) with\( \pi \le B \le \tfrac{3\pi}{2} \).

    48. \( \cosA = -\dfrac{\sqrt{3}}{3} \) with\( \pi \le A \le \tfrac{3\pi}{2} \), and \( \sinB = \dfrac{\sqrt{3}}{3} \) with\(\tfrac{\pi}{2} \le B \le \pi \).

    49. \( A = \tan^{-1} \left( \sqrt{5}\right) \) and\( B = \sin^{-1}\left( - \dfrac{\sqrt{5}}{3} \right) \)

    50. \( A = \tan^{-1} \left( - 2\right) \) and\( B = \cos^{-1}\left( - \dfrac{\sqrt{6}}{6} \right) \)

    \( \bigstar \) Find the exact value of each expression.

    52.
    \( \quad \sin \left ( \cos^{-1}\left ( 0 \right )- \cos^{-1}\left ( \dfrac{1}{2} \right )\right )\)

    53.
    \( \quad \cos \left ( \cos^{-1}\left ( \dfrac{\sqrt{2}}{2} \right )+ \sin^{-1}\left ( \dfrac{\sqrt{3}}{2} \right )\right )\)

    54.
    \( \quad \tan \left ( \sin^{-1}\left ( \dfrac{1}{2} \right )- \cos^{-1}\left ( \dfrac{1}{2} \right )\right )\)


    58. \( \tan(\sin^{-1} u + \cos^{-1} u ) \)


    59. \( \cos( \sin^{-1} u + \tan^{-1} u ) \)


    60.\( \sin( \cos^{-1} u +\ tan^{-1} u ) \)

    Answers to odd exercises.

    41a. \(\sin (a-b)=\left ( \frac{4}{5} \right )\left ( \frac{1}{3} \right )-\left ( \frac{3}{5} \right )\left ( \frac{2\sqrt{2}}{3} \right )=\dfrac{4-6\sqrt{2}}{15}\)

    41b. \(\cos (a+b)=\left ( \frac{3}{5} \right )\left ( \frac{1}{3} \right )-\left ( \frac{4}{5} \right )\left ( \frac{2\sqrt{2}}{3} \right )=\dfrac{3-8\sqrt{2}}{15}\)

    43. a. \( \tfrac{\sqrt{3}}{2} \cdot \tfrac{3}{4} - \tfrac{1}{2} \cdot\tfrac{-\sqrt{7}}{4} =\dfrac{3\sqrt{3} + \sqrt{7}}{8}\), b. \( \dfrac{3\sqrt{3} - \sqrt{7}}{8}\), c.\( \dfrac{3- \sqrt{21}}{8}\), d.\( \dfrac{3+ \sqrt{21}}{8}\), e.\(\dfrac{4\sqrt{3} -3 \sqrt{7}}{5}\), f.\(\dfrac{4\sqrt{3} +3 \sqrt{7}}{5}\)

    45. \( \sin (A+B) = \tfrac{-3}{5} \cdot \tfrac{1}{2} + \tfrac{-4}{5} \cdot\tfrac{-\sqrt{3}}{2} = \dfrac{-3+4\sqrt{3}}{10} \),\( \cos(A+B) =\dfrac{-4-3\sqrt{3}}{10} \),\( \tan(A+B) =\dfrac{48 - 25\sqrt{3}}{-11} \\ \)
    \( \quad \;\; \sin(A-B) =\dfrac{-3-4\sqrt{3}}{10} \),\( \cos(A-B) =\dfrac{-4+3\sqrt{3}}{10} \),\( \tan(A-B) =\dfrac{48 + 25\sqrt{3}}{-11} \)

    47. \( \sin (A+B) = \tfrac{\sqrt{3}}{2}\cdot \tfrac{-1}{3} + \tfrac{1}{2} \cdot\tfrac{-2\sqrt{2}}{3} = \dfrac{-\sqrt{3}-2\sqrt{2}}{6}\),\( \cos(A+B) =\dfrac{-1+2\sqrt{6}}{6}\),\( \tan(A+B) =\dfrac{-9\sqrt{3} - 8\sqrt{2}}{23} \\ \)
    \( \quad \;\; \sin(A-B) =\dfrac{-\sqrt{3}+2\sqrt{2}}{6} \),\( \cos(A-B) =\dfrac{-1-2\sqrt{6}}{6}\),\( \tan(A-B) =\dfrac{-9\sqrt{3} + 8\sqrt{2}}{23} \)

    49. \( \sin (A+B) = \tfrac{\sqrt{3}}{6} \cdot \tfrac{2}{3} + \tfrac{\sqrt{6}}{6} \cdot\tfrac{-\sqrt{5}}{3} = \dfrac{\sqrt{30}}{18},\)\( \cos(A+B) =\dfrac{7\sqrt{6}}{18},\)\( \tan(A+B) =\dfrac{\sqrt{5}}{7} \\ \)
    \( \quad \;\; \sin(A-B) =\dfrac{\sqrt{30}}{6}\),\( \cos(A-B) =\dfrac{-\sqrt{6}}{6}\),\( \tan(A-B) = -\sqrt{5} \)

    53. \(\dfrac{\sqrt{2}-\sqrt{6}}{4}\) 59. \( \dfrac{\sqrt{1-u^4} -u^2 \sqrt{1+u^2} }{1+u^2} \)

    C: SolveEquations

    Exercise \(\PageIndex{D}\)

    \( \bigstar \)Solve each equation for all solutions.

    65. \(\sin \left(3x\right)\cos \left(6x\right)-\cos \left(3x\right)\sin \left(6x\right)= -0.9\)

    66. \(\sin \left(6x\right)\cos \left(11x\right)-\cos \left(6x\right)\sin \left(11x\right)= -0.1\)

    67. \(\cos \left(2x\right)\cos \left(x\right)+\sin \left(2x\right)\sin \left(x\right)=1\)

    68. \(\cos \left(5x\right)\cos \left(3x\right)-\sin \left(5x\right)\sin \left(3x\right)=\dfrac{\sqrt{3} }{2}\)

    Answers to odd exercises.

    65. \(0.373 + \frac{2\pi}{3} k\) and \(0.674 + \frac{2\pi}{3} k\), where \(k\) is an integer 67. \(2 \pi k\), where \(k\) is an integer

    D: Verify Identities

    Exercise \(\PageIndex{F}\)

    \( \bigstar \)Simplify.

    71. \(\dfrac{\tan \left (\dfrac{3}{2}x \right)-\tan \left (\dfrac{7}{5}x \right)}{1+\tan \left (\dfrac{3}{2}x \right)\tan \left (\dfrac{7}{5}x \right)}\) 72. \(\sin(2x)\cos(5x)-\sin(5x)\cos(2x)\)

    \( \bigstar \) Verify the Identity.

    73. \(\dfrac{\sin \left(x\right)+\sin \left(y\right)}{\cos \left(x\right)+\cos \left(y\right)} =\tan \left(\dfrac{1}{2} \left(x+y\right)\right)\)

    74.\(\dfrac{\sin\;(A-B)}{\sin\;(A+B)} ~=~\dfrac{\cot\;B \;-\; \cot\;A}{\cot\;B \;+\; \cot\;A}\)

    75.\(\cot\;A ~+~ \cot\;B ~=~ \dfrac{\sin\;(A+B)}{\sin\;A~\sin\;B}\)

    76. \(\dfrac{\sin(r + s)}{\cos(r)\cos(s)} = \tan(r) + \tan(s)\)

    77. \(\dfrac{\sin(r - s)}{\cos(r)\cos(s)} = \tan(r) - \tan(s)\)

    78.\(\dfrac{\cos\;(A+B)}{\sin\;A~\cos\;B} ~=~ \cot\;A \;-\; \tan\;B\)

    79. \(\dfrac{\cos (a+b)}{\cos a \cos b}=1-\tan a \tan b\)

    80. \(\dfrac{\tan (a+b)}{\tan (a-b)}=\dfrac{\sin a \cos a + \sin b \cos b}{\sin a \cos a - \sin b \cos b}\)

    81. \(\tan \left ( x+\dfrac{\pi }{4} \right )=\dfrac{\tan x+1}{1-\tan x}\)

    82. \(\tan \left(\dfrac{\pi }{4} -t\right)=\dfrac{1-\tan \left(t\right)}{1+\tan \left(t\right)}\)

    83. \(\dfrac{\tan (x+y)}{1+\tan x \tan y}=\dfrac{\tan x + \tan y}{1-\tan^2 x \tan^2 y}\)

    84.\(\cot\;(A+B) ~=~ \dfrac{\cot\;A~\cot\;B \;-\; 1}{\cot\;A \;+\; \cot\;B}\)

    85.\(\cot\;(A-B) ~=~ \dfrac{\cot\;A~\cot\;B \;+\; 1}{\cot\;B \;-\; \cot\;A}\)

    87. \(\dfrac{\cos(x+h)-\cos(x)}{h}=\cos x\dfrac{\cos (h)-1}{h}-\sin x \dfrac{\sin (h)}{h}\)

    Answers to odd exercises
    71. \(\tan \left (\frac{x}{10} \right) \)
    75.\(\cot\;A ~+~ \cot\;B = \dfrac{\cos(A)}{\sin(A)} + \dfrac{\cos(B)}{\sin(B)} \\
    = \dfrac{\cos(A)}{\sin(A)} \cdot\dfrac{\sin(B)}{\sin(B)} + \dfrac{\cos(B)}{\sin(B)} \cdot\dfrac{\sin(A)}{\sin(A)}\\ \)
    \( \quad \;\;
    =\dfrac{\cos(A)\sin(B) +\cos(B)\sin(A) }{\sin(A) \sin(B) } = \dfrac{\sin\;(A+B)}{\sin\;A~\sin\;B}\)
    77. \(\dfrac{\sin(r - s)}{\cos(r)\cos(s)} = \dfrac{\sin (r) \cos (s) - \cos (r) \sin (s)}{\cos(r)\cos(s)}
    \\ \)
    \( \quad \;\;
    =\dfrac{\sin (r) \cos (s)}{\cos(r)\cos(s)} - \dfrac{\cos (r) \sin (s)}{\cos(r)\cos(s)}
    =\dfrac{\sin (r) }{\cos(r)} - \dfrac{ \sin (s)}{\cos(s)}= \tan(r) - \tan(s)\)
    79. \(\dfrac{\cos (a+b)}{\cos a \cos b} = \dfrac{\cos a \cos b}{\cos a \cos b}- \dfrac{\sin a \sin b}{\cos a \cos b}= 1-\tan a \tan b \)
    81. \(\tan \left ( x+\dfrac{\pi }{4} \right ) = \dfrac{\tan x + \tan\left (\tfrac{\pi}{4} \right )}{1-\tan x \tan\left (\tfrac{\pi}{4} \right )} = \dfrac{\tan x+1}{1-\tan x(1)} = \dfrac{\tan x+1}{1-\tan x} \)
    83. \(\dfrac{\tan (x+y)}{1+\tan x \tan y}= \dfrac{\tan x + \tan y}{1- \tan x \tan y} \cdot \dfrac{1}{1+\tan x \tan y}= \dfrac{\tan x + \tan y}{1-\tan^2 x \tan^2 y}\)
    85.\(\cot\;(A-B) = \dfrac{1}{\tan (A-B)}
    =\dfrac{1+\tan A \tan B}{\tan A + \tan B}
    =\dfrac{1+\tan A \tan B}{\tan A + \tan B} \cdot \dfrac{\cot A \cot B}{\cot A \cot B}
    = \dfrac{\cot\;A~\cot\;B \;+\; 1}{\cot\;B \;-\; \cot\;A}\)
    87. \(\dfrac{\cos(x+h)-\cos(x)}{h} = \dfrac{\cos x\cos (h)- \sin x\sin (h) -\cos x}{h} =\dfrac{\cos x(\cos (h)-1) - \sin x(\sin (h))}{h} \\ \)
    \( \quad \;\;= \cos x \cdot \dfrac{\cos (h)-1}{h}-\sin x \cdot \dfrac{\sin (h)}{h} \)

    \( \bigstar \) Verify the Identity.

    90. \(2\sin \left(a+b\right)\sin \left(a-b\right)=\cos \left(2b\right)-{\rm cos}(2a)\)

    91. \(\cos(x+y)\cos(x-y)=\cos^2x-\sin^2y\)

    92. \(\cos \left(a+b\right)+\cos \left(a-b\right)=2\cos \left(a\right)\cos \left(b\right)\)

    93. \( \sin(4x)-\sin(3x)\cos x =\sin x \cos(3x) \)

    94. \( \cos(4x)+\sin x \sin(3x) = \cos x \cos(3x)\)

    95. \( \sin(3x)\cos(6x)=\sin(9x)-\cos(3x)\sin(6x)\)

    96. \( \sin(4x) = \sin(5x)\cos x-\cos(5x)\sin x \)

    97. \(\sin(3x)=3\sin x \cos^2x-\sin^3x \)

    98. \(\cos(3x)=\cos^3x-3\sin^2x\cos x \)

    99. \( \sin(2x) = 2 \sin x \cos x\)

    100. \( \cos(2\theta ) = \cos^2\theta -\sin^2\theta\)

    101. \( \tan(2\theta ) = \dfrac{2\tan \theta }{1-\tan^2\theta }\)

    102. \( \tan(-x)=\dfrac{\tan x-\tan(2x)}{1+\tan x \tan(2x)} \)

    Answers to odd exercises.
    91. \(\cos(x+y)\cos(x-y) =(\cos x \cos y - \sin x \sin y)(\cos x \cos y + \sin x \sin y)
    =\cos^2 x \cos^2 y - \sin ^2 x \sin ^2 y \)
    \( \quad \;\;=(1-\sin^2 x )(1-\sin^2 y) - \sin ^2 x \sin ^2 y
    =1 -\sin^2 x -\sin^2 y+\sin ^2 x \sin ^2 y - \sin ^2 x \sin ^2 y\)
    \( \quad \;\;
    =1 -\sin^2 x -\sin^2 y= \cos^2x-\sin^2y\)
    93. \( \sin(4x)-\sin(3x)\cos x = \sin (x + 3x) -\sin(3x)\cos x\)
    \( \quad \;\;
    = \sin x \cos (3x) + \cos x \sin (3x) -\sin(3x)\cos x= \sin x \cos(3x) \)
    95. \( \sin(3x)\cos(6x) = \sin(3x)\cos(6x) + \cos(3x)\sin(6x) -\cos(3x)\sin(6x)= \sin(9x)-\cos(3x)\sin(6x)\)
    97. \(\sin (x+2x) = \sin x \cos (2x)+\sin (2x) \cos x = \sin x(\cos ^2 x - \sin ^2 x)+2\sin x \cos x \cos x \\
    = \sin x \cos ^2 x-\sin ^3 x + 2\sin x\cos ^2 x = 3\sin x\cos ^2 x - \sin ^3 x \)
    99. \( \sin(2x) = \sin x \cos x + \cos x \sin x= 2 \sin x \cos x\)
    101. \( \tan(2\theta ) = \dfrac{ \tan \theta + \tan \theta}{1- \tan \theta \tan \theta}= \dfrac{2\tan \theta }{1-\tan^2\theta } \)
    6.4e: Exercises - Sum and Difference Identities (2024)

    FAQs

    What are the six sum and difference identities? ›

    Key Equations
    Sum Formula for Cosinecos(α+β)=cosαcosβ−sinαsinβ
    Sum Formula for Sinesin(α+β)=sinαcosβ+cosαsinβ
    Difference Formula for Sinesin(α−β)=sinαcosβ−cosαsinβ
    Sum Formula for Tangenttan(α+β)=tanα+tanβ1−tanαtanβ
    Difference Formula for Tangentcos(α−β)=cosαcosβ+sinαsinβ
    2 more rows
    Jan 2, 2021

    What is the sum and difference formula used for? ›

    We can use the sum and difference formulas to identify the sum or difference of angles when the ratio of sine, cosine, or tangent is provided for each of the individual angles. To do so, we construct what is called a reference triangle to help find each component of the sum and difference formulas.

    What is the formula for cosine difference? ›

    Cosine-difference formula: cos ⁡ ( α − β ) = cos ⁡ α ⋅ cos ⁡ β + sin ⁡ α ⋅ sin ⁡ β .

    What is the sum formula for sine? ›

    Addition Formulas:

    Sin(a+b)=sin(a)cos(b)+cos(a)sin(b). Cos(a+b)=cos(a)cos(b) - sin(a)sin(b).

    What are the 6 identities? ›

    Hence, the six trigonometric identities are Sine, Cosine, Tangent, Secant, Cosecant, and Cotangent.

    What is an example of a sum identity? ›

    Sum Identity Examples

    For example, given the angle 7 π 12 , find the sine, cosine, and tangent. The amount of 7 π 12 can be found by adding π 3 to π 4 , so the sum identities can be used to find the trigonometric values.

    How to memorize sum and difference formulas? ›

    We can memorize all six sum and difference formulas by remembering only the sum formulas of the trigonometric functions. For difference formulas, we just need to interchange the signs '+' and '-'.

    How to find the sum and difference? ›

    The outcome of adding two or more numbers gives the sum. The outcome of subtracting the two numbers gives the difference. The outcome of multiplying the two or more numbers gives the product. The result of the division of one number by another is the quotient.

    How do you find the sum and difference of two functions? ›

    Sum of Two Functions: The sum of two functions is found by adding the two functions together. Difference of Two Functions: The difference of two functions is found by subtracting the second function from the first function.

    How do you differentiate cos and sin? ›

    Now we explore the intuition behind the derivatives of trigonometric functions, discovering that the derivative of sin(x) is cos(x) and the derivative of cos(x) is -sin(x). By analyzing tangent line slopes, we gain a deeper understanding of these fundamental relationships.

    What are the identities of Arcsin? ›

    Some of the important formulas and identities of arcsin are: sin (arcsin x) = x, if x is in [-1, 1] arcsin (sin x) = x, if x is in [–π/2, π/2] arcsin (1/x) = arccsc x, if x ≤ -1 or x ≥ 1.

    How many identities are there in trigonometry? ›

    The 36 Trig Identities You Need to Know.

    What is the formula for the difference in math? ›

    To find the difference between two numbers, take the larger one and subtract the smaller one. For example, the difference between 10 and 15 is 15 - 10 = 5.

    What are the six circular functions and identities? ›

    Definition 10.2. The Circular Functions
    • The cosine of θ, denoted cos(θ), is defined by cos(θ)=x.
    • The sine of θ, denoted sin(θ), is defined by sin(θ)=y.
    • The secant of θ, denoted sec(θ), is defined by sec(θ)=1x, provided x≠0.
    • The cosecant of θ, denoted csc(θ), is defined by csc(θ)=1y, provided y≠0.
    Oct 2, 2022

    How many sum and difference identities are there in total? ›

    We have six main sum and difference formulas for the trigonometric functions including the sine function, cosine function, and tangent function.

    What are the 6 even odd identities? ›

    Sine, cosine, secant, and cosecant have period 2π while tangent and cotangent have period π. Identities for negative angles. Sine, tangent, cotangent, and cosecant are odd functions while cosine and secant are even functions.

    What is the sum of 6 and the difference is 6? ›

    ∴ Two integers whose sum is 6 and the difference is also 6 are 0 and 6.

    Top Articles
    Latest Posts
    Article information

    Author: Msgr. Benton Quitzon

    Last Updated:

    Views: 5670

    Rating: 4.2 / 5 (63 voted)

    Reviews: 86% of readers found this page helpful

    Author information

    Name: Msgr. Benton Quitzon

    Birthday: 2001-08-13

    Address: 96487 Kris Cliff, Teresiafurt, WI 95201

    Phone: +9418513585781

    Job: Senior Designer

    Hobby: Calligraphy, Rowing, Vacation, Geocaching, Web surfing, Electronics, Electronics

    Introduction: My name is Msgr. Benton Quitzon, I am a comfortable, charming, thankful, happy, adventurous, handsome, precious person who loves writing and wants to share my knowledge and understanding with you.